## Publications

The most up-to-date and comprehensive record of publications is likely to be found on Google Scholar. Below, we give a selection of some of the more recent publications in different areas.

### Select Recent Highlights

#### Quantum Embedding

- On the effective reconstruction of expectation values from ab initio quantum embedding: Nusspickel, Ibrahim, Booth,
*J. Chem. Theory Comput.*, (2023). In Press. - Systematic improvability in quantum embedding for real materials: Nusspickel, Booth,
*Phys. Rev. X*,**12**, 011046 (2022). - Extending density matrix embedding: A static two-particle theory: Scott, Booth,
*Phys. Rev. B*,**104**, 245114 (2021) - Fully algebraic and self-consistent effective dynamics in a static quantum embedding: Sriluckshmy, Nusspickel, Fertitta, Booth,
*Phys. Rev. B*,**103**, 085131 (2021). - Efficient compression of the environment of an open quantum system: Nusspickel, Booth,
*Phys. Rev. B*,**102**, 165107 (2020). - Frequency-dependent and algebraic bath states for a dynamical mean-field theory with compact support: Nusspickel, Booth,
*Phys. Rev. B*,**101**, 045126 (2020). - Energy-weighted density matrix embedding of open correlated chemical fragments: Fertitta, Booth,
*J. Chem. Phys.*,**151**, 014115 (2019). - Rigorous wave function embedding with dynamical fluctuations: Fertitta, Booth,
*Phys. Rev. B*,**98**, 235132 (2018). - Spectral functions of strongly correlated extended systems via an exact quantum embedding: Booth, Chan,
*Phys. Rev. B*,**91**, 155107 (2015). arXiv link

#### Quantum Computing

- The variational quantum eigensolver: a review of methods and best practices: Tilly et. al.,
*Physics Reports***986**, 1 (2022). - Reduced density matrix sampling: Self-consistent embedding and multiscale electronic structure on current generation quantum computers: Tilly, Sriluckshmy, Patel, Fontana, Rungger, Grant, Anderson, Tennyson, Booth,
*Phys. Rev. Research*,**3**, 033230 (2021). - Variational quantum eigensolver for dynamic correlation functions: Chen, Nusspickel, Tilly, Booth,
*Phys. Rev. A*,**104**, 032405 (2021). - Automatic post-selection by ancillae thermalization: Wright, Barratt, Dborin, Booth, Green,
*Phys. Rev. Research*,**3**, 033151 (2021).

#### Green's Function Theory

- A “moment-conserving” reformulation of GW theory: Scott, Backhouse, Booth,
*J. Chem. Phys.*,**158**, 124102 (2023). - Constructing 'full-frequency' spectra via moment constraints for coupled cluster Green's functions: Backhouse, Booth,
*J. Chem. Theory Comput.*,**18**, 6622 (2022). - Scalable and predictive spectra of correlated molecules with moment truncated iterated perturbation theory: Backhouse, Santana-Bonilla, Booth,
*J. Phys. Chem. Lett.*,**12**, 7650-7658 (2021). - Efficient excitations and spectra within a perturbative renormalization approach: Backhouse, Booth,
*J. Chem. Theory Comput.*,**16**, 6294–6304 (2020). - Wave function perspective and efficient truncation of renormalized second-order perturbation theory: Backhouse, Nusspickel, Booth,
*J. Chem. Theory Comput.*,**16**, 1090–1104 (2020).

#### Machine Learning quantum states

- A framework for efficient ab initio electronic structure with Gaussian Process States: Rath, Booth,
*arXiv:2302.01099*(2023). - Quantum Gaussian process state: A kernel-inspired state with quantum support data: Rath, Booth,
*Phys. Rev. Research*,**4**, 023126 (2022). - Gaussian process states: A data-driven representation of quantum many-body physics: Glielmo, Rath, Csanyi, De Vita, Booth,
*Phys. Rev. X*,**10**, 041026 (2020). - A Bayesian inference framework for compression and prediction of quantum states: Nusspickel, Booth,
*J. Chem. Phys.*,**153**, 124108 (2020).

#### Quantum Monte Carlo

- Full configuration interaction quantum Monte Carlo for coupled electron-boson systems and infinite spaces: Anderson, Scott, Booth,
*Phys. Rev. B*,**106**, 155158 (2022). - Four-component full configuration interaction quantum Monte Carlo for relativistic correlated electron problems: Anderson, Booth,
*J. Chem. Phys.*,**153**, 184103 (2020). - Improved stochastic multireference perturbation theory for correlated systems with large active spaces: Halson, Anderson, Booth,
*Molecular Physics*,**e1802072**(2020). - NECI: N-Electron Configuration Interaction with an emphasis on state-of-the-art stochastic methods: Guther et. al.,
*J. Chem. Phys.*,**153**, 034107 (2020). - Efficient and stochastic multireference perturbation theory for large active spaces within a full configuration interaction quantum Monte Carlo framework: Anderson, Shiozaki, Booth,
*J. Chem. Phys.*,**152**, 054101 (2020). - Nonlinear biases, stochastically sampled effective Hamiltonians, and spectral functions in quantum Monte Carlo methods: Blunt, Alavi, Booth,
*Phys. Rev. B*,**98**, 085118 (2018). - A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface: Tsatsoulis et. al.,
*J. Chem. Phys.*,**146**, 204108 (2017). arXiv link - Projector Quantum Monte Carlo Method for Nonlinear Wave Functions: Schwarz, Alavi, Booth,
*Phys. Rev. Lett.*,**118**, 176403 (2017). arXiv link - Stochastic Multiconfigurational Self-Consistent Field Theory: Thomas et. al.,
*J. Chem. Theory Comput.*,**11**, 5316 (2015). arXiv link - Krylov-Projected Quantum Monte Carlo Method: Blunt, Alavi, Booth,
*Phys. Rev. Lett.*,**115**, 050603 (2015). arXiv link - Accurate Ab Initio Calculation of Ionization Potentials of the First-Row Transition Metals with the Configuration-Interaction Quantum Monte Carlo Technique: Thomas, Booth, Alavi,
*Phys. Rev. Lett.*,**114**, 033001 (2015). - Linear-scaling and parallelisable algorithms for stochastic quantum chemistry: Booth, Smart, Alavi,
*Mol. Phys.*,**112**, 1855 (2013). arXiv link - Towards an exact description of electronic wavefunctions in real solids: Booth et. al.,
*Nature*,**493**, 365 (2013). - Excited states, dynamic correlation functions and spectral properties from full configuration interaction quantum Monte Carlo: Booth, Chan,
*J. Chem. Phys.*,**137**, 191102 (2012). arXiv link - Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space: Booth, Thom, Alavi,
*J. Chem. Phys.*,**131**, 054106 (2009).

#### Strong Field Dynamics

- High harmonic generation in two-dimensional Mott insulators: Orthodoxou, Zair, Booth,
*npj Quantum Materials*,**6**, 76 (2021). - Controlling arbitrary observables in correlated many-body systems: McCaul et. al.,
*Phys. Rev. A*,**101**, 053408 (2020). - Driven imposters: Controlling expectations in many-body systems: McCaul et. al.,
*Phys. Rev. Lett.*,**124**, 183201 (2020).

#### Other

- Recent developments in the PySCF program package: Sun et. al.,
*J. Chem. Phys.*,**153**, 024109 (2020). - Direct comparison of many-body methods for realistic electronic Hamiltonians: Williams et. al.,
*Phys. Rev. X*,**10**, 011041 (2020). - PySCF: the Python‐based simulations of chemistry framework: Sun et. al.,
*Wiley Interdisciplinary Reviews: CMS*,**8**, e1340 (2018). - From plane waves to local Gaussians for the simulation of correlated periodic systems: Booth et. al.,
*J. Chem. Phys.*,**145**, 084111 (2016). arXiv link - Explicitly correlated plane waves: Accelerating convergence in periodic wavefunction expansions: Gruneis et. al.,
*J. Chem. Phys.*,**139**, 084112 (2013). arXiv link

For a technical overview of current research directions, see our Research page.